Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.

نویسندگان

  • S Saenton
  • T H Illangasekare
  • K Soga
  • T A Saba
چکیده

The effectiveness of removal of nonaqueous phase liquids (NAPLs) from the entrapment source zone of the subsurface has been limited by soil heterogeneity and the inability to locate all entrapped sources. The goal of this study was to demonstrate the uncertainty of degree of source removal associated with aquifer heterogeneity. In this demonstration, source zone NAPL removal using surfactant-enhanced dissolution was considered. Model components that simulate the processes of natural dissolution in aqueous phase and surfactant-enhanced dissolution were incorporated into an existing code of contaminant transport. The dissolution modules of the simulator used previously developed Gilland-Sherwood type phenomenological models of NAPL dissolution to estimate mass transfer coefficients that are upscaleable to multidimensional flow conditions found at field sites. The model was used to simulate the mass removal from 10 NAPL entrapment zone configurations based on previously conducted two-dimensional tank experiments. These entrapment zones represent the NAPL distribution in spatially correlated random fields of aquifer hydraulic conductivity. The numerical simulations representing two-dimensional conditions show that effectiveness of mass removal depends on the aquifer heterogeneity that controls the NAPL entrapment and delivery of the surfactant to the locations of entrapped NAPLs. Flow bypassing resulting from heterogeneity and the reduction of relative permeability due to NAPL entrapment reduces the delivery efficiency of the surfactant, thus prolonging the remediation time to achieve desired end-point NAPL saturations and downstream dissolved concentrations. In some extreme cases, the injected surfactant completely bypassed the NAPL source zones. It was also found that mass depletion rates for different NAPL source configurations vary significantly. The study shows that heterogeneity result in uncertainties in the mass removal and achievable end-points that are directly related to dissolved contaminant plume development downstream of the NAPL entrapment zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate - Scale Investigation of Nonaqueous - Phase Liquid Architecture on Partitioning Tracer Test Performance

725 Chlorinated solvents in the form of DNAPLs exist at a large number of hazardous waste sites. The distribution of DNAPLs is controlled by fi ngering (Held and Illangasekare, 1995), preferential channeling, and heterogeneity of the subsurface formation (Kueper and Frind, 1991). All of these factors increase the complexity of NAPL movement and subsequent entrapment (Schwille, 1988; Kueper et a...

متن کامل

Effects of nonaqueous phase liquids on the washing of soil in the presence of nonionic surfactants.

The removal of malathion from soil by surfactant washing was investigated under various physical-chemical states of the malathion. Three distinctive phases (without nonaqueous phase liquids (NAPL), with NAPL, and the transitional zone of NAPL) were found to be important for a better understanding of the washing process. When there is no NAPL in the system, the washing process is less dependent ...

متن کامل

A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model.

A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe') for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The...

متن کامل

Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution.

The spatial and temporal distributions of multiple reductively dechlorinating bacteria were simultaneously assessed in a one-dimensional sand column containing a tetrachloroethene (PCE) nonaqueous phase liquid (NAPL) source and associated plume zones. The column was uniformly inoculated with a PCE-to-ethene dechlorinating microbial consortium that contained Dehalococcoides spp., Dehalobacter sp...

متن کامل

A Bayesian approach to integrate temporal data into probabilistic risk analysis of monitored NAPL remediation

Upon their release into the subsurface, non-aqueous phase liquids (NAPLs) dissolve slowly in groundwater and/or volatilize in the vadose zone threatening the environment and public health over extended periods of time. The failure of a treatment technology at any given site is often due to the unnoticed presence of dissolved NAPL trapped in low permeability areas and/or the remaining presence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 59 1-2  شماره 

صفحات  -

تاریخ انتشار 2002